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On the Schrodinger equations of rotating harmonic, 
three-dimensional and doubly anharmonic oscillators and a 
class of confinement potentials in connection with the 
biconfluent Heun differential equation 

B Leaute and G Marcilhacy 
Unit6 Associte au CNRS no 769, Universitt P et M Curie, Institut H Poincart, 11 rue P 
et M Curie, 75230 Paris Cedex 05, France 

Received 19 February 1986 

Abstract. The Schrodinger equations of rotating harmonic, three-dimensional and doubly 
anharmonic oscillators and a class of confinement potentials are examined simultaneously 
with the biconfluent Heun equation. The eigenvalue problems lead us to compute a 
transcendent constant function of the corresponding physical parameters. 

1. Introduction 

It is well known that the eigenvalue problems are often very difficult to solve. This is 
true in the so-called cases of rotating harmonic [l], three-dimensional [2] and doubly 
anharmonic [3] oscillators and a class of confinement potentials [2]. 

In these four cases we get radial Schrodinger equations. Several methods are used 
to solve these equations with the help of numerical techniques. 

We intend to investigate in this paper these four radial Schrodinger equations 
simultaneously. These equations can in fact be expressed in the canonical form of the 
biconfluent Heun differential equation (BCH) [4]. This linear differential equation, 
which has one regular singularity at the origin and one irregular singularity at +m of 
fourth species [4], is characterised in the Ince [ 5 ]  classification by the formula [0, 1, 14]. 
We intend to examine the possibility of quasi-polynomial solutions and to point out 
how the eigenvalue problem comes to find values of a transcendent expression depend- 
ing only on the parameters of the corresponding differential equation. This problem 
is strictly connected with the so-called ‘connection coefficients’ problem [ 6 ]  which, to 
our knowledge, in this case of non-Fuchsian-type equations is not entirely solved, 
particularly when the irregular singularity is at +W. 

In a previous paper we have also shown how the Schrodinger equation correspond- 
ing to the interaction potential [7] 

V ( x )  = x2+ (Ax2/( I + gx2)) 

can be solved using the confluent Heun equation formalism. 
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2. Radial Schrodinger equations and the corresponding biconfluent Heun equations 

2.1. Schrodinger equations 
2.1.1. Radial Schrodinger equation for the harmonic oscillator [I]. 

where 0 s r < CO, A ,  is the eigenvalue, I ,  is the rotational quantum number and a, > 0 
is a coupling parameter. 

Equation ( 1 )  is of the form 
F”+ [Ao+ Al r + A,r’ + (A3/  r’)] F = 0. 

F = r’m+l e x ~ [ - ( r -  1 ) ’ / 2 a m I ~ ( r ) .  

( 2 )  

( 3 )  

Following Masson [ l ] ,  let 

We obtain 

21,+2 ( r - 1 )  A m - l m - l  l,+l + (- r - -)*. f f m  + ( f f m  +-). ff mr = 0. 

With the substitution 

r = & p  

p.”+ [ (21, + 2 )  + (2 /  f f ,  ) I l 2 p  - 2p2].’ 

equation ( 4 )  becomes 

+ [ ( 2 / ( ~ , ) ” ~ (  I ,  + 1)+2(A,  - I ,  - l ) p ] x  = O .  

( 4 )  

2.1.2. Radial Schrodinger equation of a three-dimensional anharmonic oscillator [2]. 

y”+ [ E  - ( Y /  r’) - pi-’- Ar4 - vr6]y  = 0 ( 7 )  
where Y = I ( I +  l ) ,  p > 0, 7) > 0 and E is the energy. 

With the transformations 

z = (77/4)’l4r2 y = 2114 Y(Z)  

equation ( 7 )  becomes 

Z’ Y”+ zY’+ (Bo+ Biz+ B ~ z ’ +  B3z3 - z“)  Y = O  

where 

c y 1  = (7)/4)”“ 

B 0 -  - - L ( i +  4 4  Y )  B ,  = E / 4 a ,  

B 2 = - ( p / 4 f f : )  B , = - ( A / 4 0 : ) .  
If one requires solutions in the form 

Y ( Z )  = Z-PI  e x p ( - a z - f z ’ ) c p ( z )  

with 

p 1  = -;(a+ Y ) 1 / 2  a = A/8a: 

equation (8) becomes 

zcp”+ [(  1 + CY)  - p z  -2z2] (9’+  (( y - ff - 2 ) z  -f[s + p (  1 + a)]}(p = 0 ( 9 )  
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where 
Ly = ($+ Y ) l ’ *  

2.1.3. Radial equation of a class of conjnement potentials. The confinement potential 
has the form [3] 

V(r) = - ( a / r )  + b r +  cr2 c > o .  

The Schrodinger equation is 

R t ’ + [ ( s ) ( E + 2 - b r - c r 2 )  - 7 ] R = O  l ( l + l )  
r 

with E being the energy. 
This equation is of the form 

Seeking solutions in the form 

R (  r )  = r‘+’ exp( - i r2aF-  pFr)g( r )  

we obtain the following differential equation for g (  r ) :  

Putting p = d& r equation (12) becomes 

with 

(TF = [ (2p/  h 2 ) ~ ] 1 ’ 2  P F  = (2p/  h2) ‘ /2 (  b /  c1 l2)  .sF = p: + (2p/  h z )  E. 

2.1.4. Schrodinger equation for the doubly anharmonic oscillator. V(x)  = px: + Ax; + ~ x : ,  
with 7) > 0 [3]. The corresponding Schrodinger equation is 

y ” +  ( E  - px: - AX: - &)y = 0 (14) 

where -CO < x, < +CO. 

Equation (14) leads to a ‘radial’ equation with the transformation 

A x l >  = e x d -  t ~ 4  +f~,x:)cp(x,) 

where 

a,  = J7) p c =  - i h / J q .  

Let U = ( aC/2)”*x:, then equation (14) becomes 

Ucp”+  [-2u2+ pc(2/Ly,)1’zu +&0’ 

+ t(21 a,)1’2[(Pf - 3% - p ) (2/  Lyc)”2u + ( E  + P,)Icp = 0 
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2.2. Canonicalform of equations ( 6 ) ,  ( 9 ) ,  (13) ,  and (15)  

Equations (6), (9), ( 1 3 )  and ( 1 5 )  are of the form 

xy”+ ( 1  + a - p x  -2x2)y’+ (( y - a -2 )x  - f [ 8  + p (  1 + a ) ] } y  = 0. 

For equation ( 6 )  

x = r / J 2 a  a =21,+1 y = l + 2 A m  

p = - (2/am)’/2 8=0.  

For equation (9) 

For equation (13) 

x = & r  =2(1+1)daF-1 y=EF+2(1+ l ) ( J a F - l )  
aF 

(19) 
2 

8 =-[-a + 2 p F (  1 + 1 ) (  1 -daF)] .  2 P F  p =- 
4% 4 a F  

We suppose a > 0. If a < 0, we take at the origin the solutions of (16) in the form 

Y(aY PY Y,  8; x )  = X-N(--CT, PI Y,  8; X I .  

For equation ( 1 5 )  

1 / 2  2 a = l  y = 2 ( p : - 3 a c - . )  1 +; 
x = ( f a , )  X I  2 

P = - P c ( 2 / d ’ 2  

a ,  
(20) 

E 8 = --* 
J2ac  

Equation (16) is the canonical form of the BCH equation [0,1,  14]. 
When a is not a negative whole number, at the origin, the suitable solution is 

defined by (41 

with 
A , = l  A l = f [ 8 + P ( l  ta)] 
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and the following recurrence relation for A,( v 2 l),  

Av+2-A,+1{(  v + 1)p  +$[a + p (  1 + U):}+ A,( y -2 - CY -2v)( v + 1)( v + 1 - a) = 0 (22) 

where 
r( a + V )  a( a + 1) . . . (a + v - 1) v = 1,2,3, .  . . 

v = 0. qa) = { 1 
(a), = 

Taking account of these results, we obtain the solutions of equations (6), (9), (13) 

(23) 

(24) 

(25) 

and (15) in the form 

~ ( r )  = r'm+' exp[-(r - 1)~/2a , , , ]~[a ,  p, y, S; r/J2a,] 

I exp[-a(h)  r - ~ L T ) I / ~ ~ ~ I N [ ~ ,  p, 'y, S; (i~)""r 'I  y(r)  = r(l /z)-2P 

R ( r )  = r'+l exp(-fr*a,-rp,)N[a, p, 'y, S ;  6 11 

where a, p, y, S are defined by (17); 
1/4 2 1 1 

where a, p, 'y, 6 are defined by (18); 

where a, p, 'y, 6 are defined by (19) and 

y(xl)  = exp(-aa,x:+fp,x:)N[a, p, 'y, 6; ( & ~ , ) ~ ' ~ x ~ ]  
where a, p, y, S are defined by (20). 

3. Quasi-polynomial solutions of the four Schrodinger equations 

As is well known [4], we see immediately, looking at the recurrence relations (22), 
that the BCH admit polynomial solutions if 

y - 2 - a = 2 n  n = 0, 1 ,2 , .  . . (27) 

A,+1 = 0. (28) 
A,+,  is a polynomial of degree n + 1 in 8 = $8 +p(1 +a)], whose roots are the 
eigenvalues corresponding to these particular solutions. The roots of these polynomials 
in the four examined cases are all real and different since 1 + a  > 0 and p E R [4]. 

and 

For equation (6) 

e = -(2/am)112(1 + im). 
For equation (9) 

3 8 = 1 4 (;) 1'4[ 7 (--) [ 1 + ($ + v )  1 / 2 1  - E 
A 4 

For equation (13) 

e = (2pF - U ) (  1 + i)/d&. 
For equation (15) 

6' = - {Pc (2 /ac ) " ' [  1 + 2( E + pC)]. (32) 
The explicit calculation of these roots cannot be performed without the help of 

numerical techniques as soon as n is increasing. 



3532 B Leaute and G Marcilhacy 

The physically suitable eigenfunctions corresponding to these eigenvalues are 
quasi-polynomial solutions which, in the four cases, may be put in the form 

Z ( r )  = r4  exp(dr+er2-f2r4)N[a,  P, ( a + 2 n + 2 ) ,  6;;  kr] (33) 

where N is the polynomial solution of the canonical BCH equation. In cases (23) and 
(25) f 2  = 0 and e < 0. We note that Flessas [2] has given the polynomial condition 
(27) when n = 0. 

4. Asymptotic behaviour of the solution 

The asymptotic expansions of the solutions are determined by that of the 
N ( a ,  P, y, 6; x) function, defined at n = 0. The problem is also that of the connection 
between solutions defined at x=O and solutions at x, 03. One requires that the N 
solutions defined at n = 0 vanish in the limit x + 03. 

Without going into all the details of proofs we intend to use some results obtained 
by Decarreau et al[4] and Batola [8] in connection with the BCH equation. The results 
allow us to determine the values of a parameter of the equation, 6, as functions of the 
three others and consequently permit us to calculate, as a rule, the eigenvalues 
corresponding to these non-polynomial solutions. 

The solutions concerned are thus solutions of polynomial order. 
The solution of the canonical equation (16), the function N ( a ,  P, y, 6; x), at x, 03 

admits the following asymptotical behaviour [ 81: 

(34) ( Y + c r + 2 ) / 2  N ( a ,  P, Y, 8; x)  - K2(a, P, x 8) exp(Px + x21x- 
X'CC 

The constant K 2  is a non-elementary constant, defined by 

where J is defined by 

x* exp(-px-x2)N(A, p, v, a;  x)  dx. (36) 

This integral is defined when Re A > 0 and Re( v - A ) > 0. Here the condition becomes 
a > 171; in the four cases, we have the following conditions. 

For equation (6), taking (17) into account, 

For equation (9), taking (18) into account, 
21, + 1 > 11 +2A,/. 

For equation (13), taking (19) into account, 

For equation (15), taking (20) into account, 
2( 1 + 1 )G - 1 > 1 ( EF/ (YF) + 2( 1 + 1)( 6 - 1 ) 1 .  

I(1/ a,)(Pf - 3ac - p )  + 31 < 1. 

The eigenvalues corresponding to solutions of the form (33) with the boundary 
condition Z ( r )  = 0 at r, Cc are the roots a(a ,  P, y )  of the transcendent equation [8]: 

(37) J [ A ,  P, v, d A ,  P, v ) l  = 0. 



Schrodinger equations of oscillators 3533 

This difficult problem can be reduced with the help of the Faxen integral [ 9 ] :  

r x ( a ,  A ;  x) = t X - ’  exp(-At“ - t )  dt. 5: 
If A = 0, rx becomes the Euler r function and the constant J ( A ,  p, v, CT) can be usefully 
written as 
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